
Designs, Codes and Cryptography, 4, 123-128 (1994) 
�9 1994 Kluwer Academic Publishers. Manufactured in The Netherlands. 

A Coding Theoretic Solution to the 
36 Officer Problem 

STEVEN T. DOUGHERTY 
Department of Mathematics, University of Scranton, Scranton, PA 18510 

Communicated by D. Jungnickel 
Received May 27, 1992; Revised June 11, 1993. 

Abstract. Using the tools of algebraic coding theory, we give a new proof of the nonexistence of two mutually 
orthogonal Latin squares of order 6. 

1. Introduction 

In 1782 Euler posed the following question: can 36 officers be arranged in a square of 
side six such that each of six ranks and each of six regiments are represented once in each 
row and column, [4]. Euler conjectured that there was no solution, and introduced mutually 
orthogonal Latin squares to decide the conjecture. G. Tarry proved him correct with an 
exhaustive search of all Latin squares of order 6 in 1901, [9]. Recently a more elegant 
proof was offered by Stinson in [8]. We present here a new proof, which will use methods 
which may possibly be applicable to similar problems for larger values of n. We begin 
with a definition. 

DEFINITION. Let S be a set of cardinality n. Let A be an n • n matrix such that each 
row and column of A contains each element of S exactly once. Then A is a Latin square 
of order  n. Let A = (aij) and B = (bij) be Latin squares of order n; i f  {(aij, bij)} = 
S • S then A and B are said to be orthogonal, A set {At, A2 . . . . .  Ak} with Ai orthogonal 
to Aj for 1 _< i < j ___ k is called a set of k Mutually Orthogonal Latin Squares. 

It is well known that k-MOLS of order n are equivalent to a (k + 2)-net of order n. 
Nets are defined as follows. 

DEFINITION. A k-net of order n is an incidence structure consisting of n 2 points and nk 
lines satisfying the following four axioms: 

(i) every line has n points; 
(ii) parallelism is an equivalence relation on lines, where two lines are said to be parallel 

if they are disjoint or identical; 
(iii) there are k parallel classes each consisting of n lines; 
(iv) any two nonparallel lines meet exactly once. 



124 S.T. DOUGHERTY 

DEFirqrrioN. A traversal  of a net is a set of  n points having exactly one point in common 
with each line of  the net. 

The following definition of Cp(Nk) is identical to the one given by Moorhouse in [6] 
and [7] and also identical to the definition of the code of a design given by Assmus and 
Key in [1]. The characteristic function of a line at a point is 1 if  the point is incident with 
the line and 0 otherwise. We shall use l to denote both the line and its characteristic function. 

DEFINITION. Let Cp(ND be the row space over Fp generated by the characteristic func- 
tions of lines. Let Hp(Nk) be the code over Fp generated by vectors of  the form l - m 
where l and rn are parallel. 

We take the standard definitions from algebraic coding theory. Namely, we let F b e  a 
finite field, in this setting it will always be of prime order, and then C is a linear [n, k] 
code if C is a subspace of F n of  dimension k. Also the weight of  a vector v in C, denoted 
by wt(v),  is the number of nonzero coordinates of  the vector. 

2. Code of Nets 

We shall use Cp(Nk) and Hp(Nk) to give geometrical information about the nets. In order 
to do so we must assume that p divides n ;  we make that assumption for the remainder 
of  the article. For a more complete discussion of  how these codes are used see [3]. 

Tt-IEOREM 2.1. I f  N k has a traversal or i f  k ;~ rp + 1, then dim Cp (Nk ) - dim Hp (Nk ) = k. 

Proof We know dim Cp(Nk) - dim Hp(Nk) < k since Cp(Nk) = <rnl, . . . ,  mk, Hp(Nk) > 
where m i E 9g i, and 9gi is the i-th parallel class. Moreoever, we may assume that k > 1, 
since dim Cp(N1) = n and dim Hp(N1) = n - 1. We shall show that {ml, m2 . . . .  , mk} 
are linearly independent over He(N D. First we note that since k > 1, no line m is in 
Cp(Nk)" since [l, m] ~ 0 for I and m not parallel. Hence no line m is in Hp(Nk), since, 
clearly, Hp(Nk) c_ Cp(Nk) • 

Assume v = aim1 + a2m2 + . . .  + agnk E Hp(N k) c Ce(Nk) f) Cp(Nk) • Since 
v ~ Cp(Nk) ' ,  [v, m] = 0 for all lines m in Nk. Let lj ~ 9gj; we have: 

0 = [v, lj] = [alml, lj] + . . .  + [akmk, lj] = ~ a i .  
i~ j  

Therefore 0 = (~=1 ai) . . . . .  (~f=l ai) - ak, and so Eik=l a i = a 1 = a 2 . . . . .  ak. 
I f  k ~ rp + 1, set a i = a, we have F,i~, j ai = (k - 1)a = 0, if a ~ 0 then (k - 1) 

= 0 ; b u t k  ;e rp + 1 s o k -  1 ;~ 0, a n d h e n c e a  = 0, and in this case {m 1 ,m 2 . . . . .  
mk} are linearly independent. 



A C O D I N G  T H E O R E T I C  S O L U T I O N  TO T H E  36 O F F I C E R  P R O B L E M  125 

N o w  let  t be  a t ransversa l  Nk. W e  know t ~ Hp(Nn) " since [t, m - l] = 1 - 1 = 0 
for  m para l le l  to l. So [v, t] = 0, that  is [ a lml ,  t] q- . �9 �9 q- [akm k, t] = 0 which  impl ies  

a l  + a2 + �9 �9 �9 + ak = 0, and so, again we have that a i = 0 for  all i, giving the result.  [ ]  

LEMMA 2.1.  Let  n be  even and set p = 2. Let  Ark be  a k-net  of  o rder  n wi th  91k = {ll k, 
12 k . . . . .  Ink}. A s s u m e  ~ al k li k ~ Cp(Nk_O; where  Nk_l is any (k - 1) subnet  of  Nk, then 
we have the fol lowing relat ion:  

~-1 l/k-1 Z aiklik + Z ai + " "  Z ~ I l l =  O. 

Let  a j be the number  
any j then d im Cp (Nk) 
not  extend. 

of a / w h i c h  are  1, that is c,J = ! {a / I  ~ i  = 1}]. If a J  is odd for 
- d im  Hp(Nk) < k, and therefore  Ark has no t ransversals  and does  

Proo f  Note  that  C2(Nk) = <I  1 . . . . .  lkl, H2(Nk)> .  For  all  a j odd,  take one l ine with 
nonzero  coeff ic ient  out  of  the summat ion ,  and a r range  it so that  it  is l j .  We have 

Z l j  = ~ o t i k l i  k + . . .  + ~ a l l l )  
ce j odd i = 2  i=2  

where  all  the weights  in the summat ions  are now even and so the r ight  side is in H2(Nk). 
We now have a nontr ivial  l inear  combinat ion  of  {l 1, . . . ,  l~} in H2(Nk) and so d im C2(Nk) 

- d im H2(Ng) < k and hence  by the previous  theorem Ark does  not  have a t ransversal .  [ ]  

Let  n - 2 (mod  4);  then n = 2m with  m odd.  Le t  N 3 be  a 3-net  of  order  n wi th  the 

fol lowing para l le l  c lasses:  911 = {/1, - . . ,  In}, 912 = {ml, . . . ,  mn},  and 913 = {tl . . . . .  
tn }. Set  p = 2, for the r ema inde r  of  the art icle.  

LEMMA 2.2.  I f  ~ ait i E C2(N2) , where  N2 = 9--[1 (-J 9[2, then wt (a l ,  . . . ,  an) is n, 0, or  
n/2 = m. 

Proo f  Let  { q l  . . . . .  qn 2} be the poin t  set of  N3 with  t i being incident  with the points  

q(i-1)n+l tO qin" I f  ~ Otit i E C2(N2), then I; ctit i = ~, I~imi + ~ 3"ili for  a i ,  /~i, 3'i ~ F2. I f  
wt(oq,  . . . ,  an) = 0, then r. otlt i = 0, and/~i  = 3"i = 0 for all  i or /~i  = 3'i = 1 for all  
i. I f  wt(oq . . . . .  an )  = n, then I2 a i t  i = j ,  w h e r e j  is the a l l -one vector, and Bi = 1 for 
a l l  i o r  3'i = 1 for al l  i. 

A s s u m e  w t ( a  1 . . . .  , an) is ne i ther  0 nor  n, then some a i = 0 and some  aj = 1. Ar -  
range  mat ters  so that  a l  = 1 and a2 = 0; then the value of  v = r~ otiti is 1 at  ql . . . . .  
qn and 0 at qn+l . . . . .  q2n. 

I f 3 ' / =  1 for al l  i ,  then ~i = 0 for  all  i, s ince v(ql)  = 1 . . . .  , v(qn) = 1 and therefore  
v = j ,  and  l ikewise  if /~i  = 1 for  all  i. He re  this is not  the case,  s ince wt(oq . . . . .  an )  

n. So at  leas t  one 3'i = 1 and one 3"j = 0, and at  least  one /3  i = 1 and one/Sj  = 0. 
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Let /3  = wt(fl  l, . . . ,  fin) and ql = wt(~l ,  . . . ,  7n). Since v(qi)  = 1 for 1 __ i _ n, 
then/3 + q~ = n, and since v(qi)  = 0 for n + 1 < i _< 2n, then/3 = 7 since each/3imi 

must  intersect a "~ili to  make it zero whenever/3i and "ri are 1. Hence/3 = 3~ = n/2 = m. 
We have Z c~iti = I2/3imi + ~ "rili implies /3  = 3, = m, but ~ aiti = ~, flimi + ~, 3"ili 

implies ~ olit i "[- ~. /3imi ~-- ~ o[ili, SO likewise a = /3 = m. Hence wt(oq . . . . .  an) = 0, 
n, o r m .  []  

THEOREM 2.2. I f  dim C2(N3) - dim C2(N2) < n - 1, then N2 does not  extend to a 4-net; 
in fac t  N3 will not  have a transversal. 

Proof. We note that by Theorem 2.1, dim Ce(N2) - dim H2(N2) = 2 since k = 2 and 

2 ~ 1 (mod 2). Now suppose that w = a2(tl + t2) + . . .  + an(t1 + tn) E H2(N 2) c 
C2(N2). Write 

W 

then, when ~7=z ~i = 1 an odd number of ~x 2, . . . ,  ~x n are 1 and so wt(E7=2 czi, or2 . . . . .  
an)  is even and when En= 2 oti = 0 an even number of a2, . . . ,  o/n are 1 and again wt(En=2 

o~i, or2, �9 . . ,  otn) is even. Thus wt(~n=2 oti, or2, . . . ,  otn) is even and by the previous lemma 
the weight is either 0 or  n. 

Since tl + t2, . . . ,  tl + tn generate H2(N3) over HE(N2), we have shown that dim 
H2(N3) - d im H2(N2) = n - 2. Now, i f  dim C2(N3) - dim C2(N2) < n - 1 then dim 
C2(N3) - dim HE(N3) ~ 3 and hence by Theorem 2.1, does not even have a transversal 

and therefore does not extend. []  

Therefore i f  dim Cz(N3) < 3n - 2, the net does not complete, since dim Cz(N3) = 
n + n - 1 + dim C2(N3) - dim C2(Nz). This result is shown by Moorhouse in [7] as 
well, but his proof  relies on loops and on the work of  Bruck in [2], whereas the proof  
above uses only elementary l inear algebra. One can see that the construction of  the linear 
combination of  n/2 lines in the third parallel  class is equivalent to the subloop condition 
given by Bruek in [2]. The benefit of  not using loops is that loops are equivalent to 3-nets 
and as such cannot be used for arbitrary k-nets, whereas the methods above can be so used. 

We shall now show how the methods presented here can be used to prove the nonex- 
istence of  two mutually orthogonal Latin squares of  order  6. Assume that there exists a 

4-net of  order  n - 2 (mod 4). Let 9J 1 = {l i }, 9.12 = {mi }, 9.13 = {ti }, and 9-I4 = {st }. 
Assume we have the following linear combination: 

E ~ + E / 3 i m i  + E 3/iti + ~ ~3isi = 0 

where cx = wt(oti), fl = w t ( / 3 i ) ,  ~ ~-" w t ( ~ i ) ,  and ~ = w t ( ~ i ) .  If  any of a ,  /3, 7, di are 
odd,  then by Lemma 2.1 dim C2(N4) - d im HE(N4) < 4, but this contradicts Theorem 
2.1. Hence a ,  /3, % 5 are all even. 
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The all one vector j is in C2(Nk) ,  since it is the sum of  any parallel class. By adding 
the j vector an appropriate number o f  times it can be arranged so that/3 = 3' = 6 = 2 
and ~ is either 4 or 2. The case a -- 4 is ruled out by a simple combinatorial argument: 
Simply arrange the lines from the first parallel class horizontally, with the first four being 
the lines with nonzero coefficients in the linear combination. On the first four lines all 
six of  the other lines in the linear combination must intersect each line exactly once. Then 
the two lines from each of  the second and third parallel classes must intersect the two 
lines in the fourth parallel class on the four points on these two lines that are not incident 
with any of  the four lines in the first parallel class. But on each of  these points there must 
be an even number of  lines from the linear combination intersecting it, which produces 
a contradiction. The only case that remains is a = /3 = 3" = b = 2. 

This configuration is ruled out by the following combinatorial argument which is similar 
to one given by Stinson in a different setting in [8]. 

Assume this linear combination can occur, we can write it without loss of  generality as: 

ll + 12 + ml + m2 + tl + t2 + Sl -t- s 2 = O. 

To see this combination, arrange the n e points in a square. Without loss of  generality we 
can assume ll and/2 are the first two horizontal lines and ml and m2 are the first two ver- 
tical lines. The next four lines tl, t2, sl, s z must intersect the first four lines in the 16 points 
where the first four lines do not intersect each other, also they must intersect each other 
(except for lines parallel to each other) in 4 of the 16 points not on any of {ll, /2, ml, 
m2}. We see that there are 8 lines involved in the linear combination and 24 points in- 
volved, where each of  these 24 points has 2 lines from the linear combination incident 
with it, and 2 lines not in the linear combination incident with it. 

Let L be the set of  lines in the net and L '  be the set of lines not involved in the linear 
combination, that is L '  = {/3, . . - ,  /6, m3,  . . . ,  m6,  t3, . - . ,  t6, s3, . . . ,  s6}. Let P be 
the set of  points in the net and P '  be the 24 points involved in the linear combination. 
We shall show that the lines of  L '  cannot be arranged on the points of P '  as is necessary 
in a net. 

First we note that it is clear, by a simple counting argument that any line in L '  is incident 
with 3 points in P '  and 3 points in P - P'. 

Take a line I in L', it meets three points in P', through each of these 3 points are 2 lines 
from the linear combination, that is 2 lines from L - L' ,  so each is incident with 2 lines 
in L'. Since one of these lines is l, the other is from a different parallel class. Through 
each of  these points are 2 lines from L - L', but no 2 of  these 3 have the same 2 parallel 
classes represented with lines from L '  incident with them. Thus I intersets 1 line in L '  from 
each other parallel class at a point in P'. 

Suppose that rl, r2, r3 E L '  form a triangle. We show that the three vertices Pa = rl 
t') 1"2, P2 = r2 f') r2, P3 = r 3 0  rl cannot all belong to P'. Assume on the contrary that 

Pl,  P2, P3 E P'. Through Pl are also 2 lines in L - L', x and y, therefore (rl, rE, x, y) 
are concurrent. Then (w, r2, 1"3, z) are also concurrent where w, z E L - L'. Note that 
two lines are in the same coordinate of these 4-tuples if they are parallel. Then P3 must 
be incident with either z or y since r 3 meets only 2 lines from that parallel class in P '  
by the above explanation, which is a contradiction. 
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We also note that for any line in L', the points of  incidence with three lines from L '  that 
it meets in P '  are distinct. 

By relabeling of  L '  we can assume that li meets mi, ti, and s i for 3 < i < 6 in P'. For 

each i ~ {4, 5, 6}, the lines mi, si, ti are not concurrent, and /3  must meet exactly one 

of  the three points m i O si, si O ti, t i n m i. 

Suppose the l ines /3 ,  m4, t4 and ss are concurrent, then the lines 13, ms, t 5, s 6 and the 
l ines /3 ,  m6, t6, s4 are forced to be concurrent as well. Where  can the pair  m 3, t 3 be? If  
/4, m3, t3, x are concurrent then as above the lines 14, m3, t 3 would be concurrent, as well 
as the lines 14, ms, t5 and the lines 14, m6, t6 would be concurrent causing a pair  to be 
repeated. The same argument shows that/5,  m3, t3, x and/6 ,  m3, t3, x cannot be concur- 
rent. Therefore the pair  m3, t 3 does not occur, which is a contradiction. Hence this linear 

combination does not occur. 
Since both combinations can be ruled out, then dim C2(N4) - d im C2(N3) = n - 1 

= 5 and hence dim C2(N4) = 6 + 5 + 5 + 5 = 21 and dim H2(N4) = 21 - 4 = 17, 
which implies dim H2(N4) • = 36 - 17 = 19. But C2(N4) c_ H2(N4) • ' which is a contra- 
diction, and hence there do not exist two mutually orthogonal Latin squares of  order 6. 
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